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The transport of energy in collisionless plasmas, especially in space plasmas, is far from being
understood. Measuring the temperature of the electrons and their nonthermal properties can give
important clues to understand the transport properties. Quasi-thermal noise �QTN� spectroscopy is
a reliable tool for measuring accurately the electron density and temperature since it is less sensitive
to the spacecraft perturbations than particle detectors. This work models the plasma QTN using a
generalized Lorentzian �“kappa”� distribution function for the electrons. This noise is produced by
the quasi-thermal fluctuations of the electrons and by the Doppler-shifted thermal fluctuations of the
ions. A sum of two Maxwellian functions has mainly been used for modeling the QTN of the
electrons, but the observations have shown that the electrons are better fitted by a kappa distribution
function. Pioneer work on QTN calculation only considered integer values of �. This paper extends
these calculations to real values of � and gives the analytic expressions and numerical calculations
of the QTN with a kappa distribution function. This paper shows some generic properties and gives
some practical consequences for plasma wave measurements in space. © 2009 American Institute
of Physics. �doi:10.1063/1.3243495�

I. INTRODUCTION

In collisionless plasma, like the solar wind, the mecha-
nism of energy transport is still an open question. Due to the
high difference of mass between the ions and the electrons,
the electrons transport the energy whereas the ions transport
the impulsion. Consequently, measuring accurately the tem-
perature of the electrons and their nonthermal properties with
quasi-thermal spectroscopy can give important clues to un-
derstand the energy transport properties.

By the same way as a passive electric antenna is sensi-
tive to electromagnetic waves, it is also sensitive to local
fluctuations of the electric potential. These fluctuations are
produced by the motions of the ambient electrons and ions.
As soon as the plasma is stable, this quasi-thermal noise
�QTN� is completely determined by the particle velocity dis-
tributions in the frame of the antenna.1

The problem is simpler in the absence of a static mag-
netic field or at frequencies much higher than the electron
gyrofrequency, since in this case the plasma can be consid-
ered to be an assembly of “dressed test” particles moving in
straight lines. The QTN spectrum around the plasma fre-
quency fp consists of a noise peak just above fp produced by
electron quasi-thermal fluctuations. Since the plasma density
ne is proportional to fp

2, this allows an accurate measurement
of the electron density. In addition, since the shape of the
spectrum is determined by the electron velocity distribution,
the analysis of the spectrum reveals its properties. One of the
main advantages of the QTN spectroscopy is its relative im-
munity to the spacecraft potential and photoelectrons pertur-
bations which, in general, affect particle analyzers.2,3

A sum of two Maxwellian functions has mainly been

used for modeling the electron velocity distributions. The
observations have shown that the suprathermal electrons are
better fitted by a generalized Lorentzian �“kappa”� distribu-
tion function,4 first introduced to model space data by
Vasyliunas5 and Olbert.6 In this paper, we compute the QTN
obtained for such electron distribution functions with real
kappa parameter. Chateau and Meyer-Vernet7 only consid-
ered integer values of � in order to simplify the calculation
of the longitudinal dielectric permittivity. Section II shows
how to generalize this calculation to real values of kappa and
gives the corresponding QTN. In Sec. III, we present other
contributions to the thermal noise in usual space plasmas.
General properties of the QTN are shown in Sec. IV.

II. KAPPA ELECTRON THERMAL NOISE

A. Basics

The voltage power spectrum of the plasma QTN at the
terminals of an antenna in a plasma drifting with velocity
V� is

V�
2 =

2

�2��3� � k� · J�

k
�2

E2�k�,� − k� · V� �d3k . �1�

The first term in the integral involves the antenna response to
electrostatic waves, which depends on the Fourier transform
J��k�� of the current distribution along the antenna. The second
term is the autocorrelation function of the electrostatic field
fluctuations in the antenna frame. At frequencies much
higher than the gyrofrequency, we have
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E2�k�,�� = 2�
� jqj

2�f i�v����� − k� · v��d3v

k2�0
2��L�k�,���2

, �2�

f j�v�� being the velocity distribution of the jth species of
charge qj and �L�k� ,�� the plasma longitudinal function.8

In the case of electrons, the thermal velocity is usually
higher than the plasma velocity V� , so using a few manipula-
tions using the isotropy of f�v��,9,10 we obtain

V2 =
16m�p

2

��0
�

0

� F�kL�B�k�
k2��L�2

dk �3�

with

B�k� =
2�

k
�

�/k

�

vf�v�dv , �4�

�L = 1 +
2��p

2

k
�

−�

+� v	f�v	�
kv	 − � − io

dv	 , �5�

where v	 is the component of v� parallel to k�. The term io
denotes an infinitesimal positive imaginary part, and the
function F specifies the antenna geometry as

F�x� =
1

x

Si�x� −

1

2
Si�2x� −

2

x
sin4� x

2
� �wires� , �6�

F�x� =
1

4
�1 −

sin x

x
� �spheres� , �7�

where Si is the sine integral function.

B. Choice of the distribution function

We choose the following generalized Lorentzian func-
tion as electron velocity distribution:

f��v� =
A

�1 + v2/�v0
2��+1 , �8�

with

A =
��� + 1�

����3/2v0
3��� − 1/2�

, �9�

where ��x� denotes the gamma function and v0 is the thermal
speed related to the kinetic temperature Te as

v0 =�2� − 3

�

kBTe

me
, �10�

where kB is the Boltzmann constant and me is the electron
mass.

Such f� functions will be named in this paper as “kappa
functions;” � is a real number, which, from Eq. �10�, must be
greater than 3/2. In the upper limit �→�, these functions are
equivalent to Maxwellian functions.

These functions were largely discussed in Refs. 7 and 11
and citations therein. As pointed out by Valentini and
D’Agosta,12 the interest of kappa distributions to describe
experimental data is increased since these distributions turn
out to be a consequence of the entropy generalization

through the generalized Boltzmann H theorem13–17 in the de-
bated nonextensive thermodynamics proposed by Tsallis in
1988.18 Furthermore, related distribution functions are repro-
duced from the Fokker–Planck equation as a consequence of
wave-particle interactions in the presence of collisions and
are compatible with the Kullback relative entropy.19

We define the Debye length in this plasma as

LD =
v0

�p
� �

2� − 1
�1/2

, �11�

which is the shielding distance of low-frequency electric per-
turbations with a kappa distribution.7

C. Longitudinal dielectric permittivity

The longitudinal dielectric permittivity is given by Eq.
�5�. Considering a kappa function, we obtain

�L = 1 +
2��p

2

k
A�

−�

+� v	

�kv	 − � − io��1 + v	
2/�v0

2��+1dv	 .

�12�

Setting x=v	 /�1/2v0 and z=� /�1/2kv0, and using partial frac-
tion decomposition of the integrand, we obtain

�L = 1 +
2��p

2

k2 � 1

�v0
2

� − 1/2
�

+ zI� �13�

with

I = Av0�1/2�
−�

+� dx

�x − z − io��x2 + 1��+1 . �14�

The integrand I shows a pole for x=z+ io. Setting

1

�x2 + 1��+1 = 
 1

�x2 + 1��+1 −
1

�z2 + 1��+1 +
1

�z2 + 1��+1 ,

�15�

we obtain

I = Av0�1/2��
−�

+� 1

�x − z − io�
 1

�x2 + 1��+1

−
1

�z2 + 1��+1dx + 
 1

�z2 + 1��+1�
−�

+� dx

�x − z − io�� .

�16�

The first integrand shows a multiplying factor that vanishes
when x=z. It is analytic near the real axis and the term io is
no longer required. The second term is calculated by the
residue theorem, indenting the contour about z+ io with a
small semicircle and closing it by a large semicircle in the
upper half-plane, and gives

i�

�z2 + 1��+1 .

Thus the imaginary part of the dielectric permittivity is
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Im��L� =
2��� + 1�z3

��� − 1/2�r2

��

�z2 + 1��+1 , �17�

where r= f / fp=w /wp.
The first part of Eq. �16� will be numerically integrated

taking care of the infinite upper and lower limits. Due to the
term 1 / �x−z�, the integration needs to be separated in three
parts,

�
−�

+� 1

�x − z�
 1

�x2 + 1��+1 −
1

�z2 + 1��+1dx

= �
−�

−	 1

�x − z�
 1

�x2 + 1��+1 −
1

�z2 + 1��+1dx

+ �
−	

+	 1

�x − z�
 1

�x2 + 1��+1 −
1

�z2 + 1��+1dx

+ �
+	

+� 1

�x − z�
 1

�x2 + 1��+1 −
1

�z2 + 1��+1dx , �18�

where 	
z, so that

− 1

�z2 + 1��+1��
−�

−	 1

�x − z�
dx + �

+	

+� 1

�x − z�
dx�

=
− 1

�z2 + 1��+1
ln�	 + z

	 − z
� .

The remaining parts are proper integrals which can be
calculated numerically after using Taylor’s expansion in
l’Hôpital’s rule around x=z. The longitudinal dielectric per-
mittivity calculated by this method is valid for any values of
kappa greater than 3/2. In the particular case when � is inte-
ger, it is equivalent to the formula given by Ref. 7 and used
in Refs. 11 and 20.

D. Kappa electron thermal noise

The fluctuations of the electrostatic field are given in Eq.
�3�. The dielectric function �L has just been calculated. F�kL�
depends on the geometry of the antenna with expression �6�
or expression �7� for, respectively, wire or sphere antennas,
where L is the length of the antenna. Let us now calculate
B�k�.

Inserting Eq. �8� into Eq. �4�, we get

B�k� =
2�A

k
�

�/k

+� v
�1 + v2/�v0

2��+1dv ,

which gives, after we set x=v2 /�v0
2 and z=� /�1/2kv0,

B�k� =
�Av0

2

k

1

�1 + z2�� . �19�

Substituting this expression of B�k� into Eq. �3� and setting
r=� /�p, u=L /LD with LD given by Eq. �11�, v0 given by
Eq. �10�, and A given by Eq. �9�, we find the expression of
the normalized QTN spectrum,

V2

Te
1/2 =

16

�3/2�0�

1

r2me
1/2kB

1/2�2� − 3�1/2 ��� + 1�
��� − 1/2�

��
0

+�

F� ru

z�2� − 1�1/2� zdz

��L�2�1 + z2�� . �20�

Figure 1 shows that the calculations presented in this
section agree with the results of Chateau and Meyer-Vernet7

for integer values of �. A linear interpolation between two
integer values of � may not be accurate enough to calculate
V2 with real values of �, especially for ��3.

III. OTHER CONTRIBUTIONS OF THE
QUASI-THERMAL NOISE

A. Shot noise and antenna impedance

Since the antenna is a physical object which disturbs the
trajectories of the particles �they cannot pass through its sur-
face� and furthermore the antenna surface can eject photo-
electrons, there is an additional noise, which will be called
shot noise in this paper. In dilute space plasmas, the antenna
radius a and dc potential  often satisfy a�LD and
�e /kBTe��1. Then, a good approximation for this shot
noise10 is given by

VS
2 = 2e2Ne�Z�2, �21�

where Ne= �4��−1/2nvtheS is the electron impact rate on one
antenna arm10 with S=2�aL and S=4�a2 for a wire and a
sphere antenna, respectively.

The antenna impedance Z is given by

Z =
4i

�2�0�
�

0

� F�kL�Fa�ka�
�L

dk , �22�

with the function F given in Eq. �6� or Eq. �7�, and Fa taking
into account the finite radius a of the antenna as

6.0

6.5

7.0

2 3 4 5 6 7 8

V
2

(x
10

-1
5

V
2 .H

z-1
)

κ

f<fp

0.8

1.0

1.2

1.4

2 3 4 5 6 7 8

V
2

(x
10

-1
4

V
2 .H

z-1
)

κ

f~fp

3.0

3.4

3.8

2 3 4 5 6 7 8

V
2

(x
10

-1
5

V
2 .H

z-1
)

κ

f>fp this paper
Chateau & Meyer-Vernet 91

linear interpolation

FIG. 1. Electron noise power level in V2 Hz−1 as a function of � between 2
and 8 calculated for a wire antenna with l=35 m, ne=4�105 m−3, and
Te=1.5�105 K for three frequencies such as f � fp, f � fp, and f 
 fp. The
cross symbols show our calculation for real values of � and the black square
symbols are calculated by the formula given by Chateau and Meyer-Vernet
�Ref. 7� for integer values of �. The lines are the linear interpolations be-
tween two close integer values of �.
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Fa�x� = J0
2�x� �wires� ,

Fa�x� = � sin x

x
�2

�spheres� ,

where J0�x� is the Bessel’s function.
The relative contribution of this noise VS

2 /V2 for f / fp

�1 is generally negligible for the wire dipole �since a�LD�,
but it is dominant for sphere antennas.10 This is the reason
why QTN measurements on space missions used wire di-
poles. For wire antennas, this noise decreases with frequency
as 1 / f2.

The antenna impedance �22� is the main contribution of
the radio receiver impedance ZR.21 Hence the voltage power
spectrum V�

2 , which is the interesting quantity, is related to
that measured by the receiver VR

2 by the relation

VR
2 = V�

2� ZR

ZR + Z
�2

. �23�

Thus, a good determination of the antenna impedance is re-
quired for any accurate plasma measurement.

B. Ion thermal noise in drifting plasma

In the case of a drifting plasma where the thermal veloc-
ity vthi of the ion is smaller than the velocity of the plasma V,
like the solar wind, the lower-frequency part of the QTN
spectrum is due to the above-mentioned shot noise and to the
ion thermal noise, which is Doppler shifted by the plasma
velocity. This noise has been extensively studied in Ref. 3.
The ion contribution to the voltage power spectrum in cylin-
drical coordinates of axis parallel to V� is

Vi
2 =

8

�5/2
ne2

�0
2

1

vthi
�

0

+� dk

k3

� �
−1

+1 exp��� − kVu�2/vthi
2 k2�

��L�k�,� − kVu��2
du

� �
0

2� sin4� kL

2
cos ��

�kL cos ��2 d� , �24�

where u=cos � with � as the angle between k� and V� , and � is
the angle between the antenna and k� given by

cos � = u cos 	 + �1 − u2 sin 	 cos � ,

where 	 is the angle between V� and the antenna, and � is the
azimuthal angle of k� in a plane perpendicular to V� .

To deduce a simpler formula to be used for a plasma
diagnostic, one could consider the two simple cases where
the antenna is perpendicular or parallel to the velocity V� .3

The first case is the most interesting in practice. Since the
effect of the velocity is maximum for k� parallel to V� and
since for a long antenna the maximum response is ultimately
at 90° from the antenna direction,22 the ion contribution to
the thermal noise �which increases with the Doppler shift� is
expected to be maximum when the antenna is perpendicular
to V� .

Figure 2 represents a typical example of QTN spectrum
in the solar wind �solid line� and its different contributions:
the electron QTN considering kappa distribution with �
=3.5 �dashed line�, the Doppler-shifted proton noise �dotted
line�, and the shot noise �dashed-dotted line� for a wire di-
pole antenna such as L /LD=8 with �=3.5, n=5.6
�106 m−3, Te=1.12�105 K, Tp=2.7�105 K, and V
=800 km s−1.

IV. RESULTS AND DISCUSSIONS

In this part, since the sphere antennas are not used in
practice for QTN analysis, we will focus on the electron
contribution of the QTN with a wire dipole antenna. The
double sphere antenna case can be found in Ref. 7 for integer
value of �.

Figure 3 shows a set of normalized spectra calculated
with a kappa distribution with �=3.5 for different values of
the normalized antenna length L /LD. This illustrates the ge-
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FIG. 2. A typical theoretical QTN spectrum with a kappa velocity distribu-
tion for the electrons �solid line� and the different contributions: the electron
thermal noise �dashed line�, the Doppler-shifted proton noise �dotted line�
and the shot noise �dashed-dotted line� for a wire dipole antenna such as
L /LD=8 and a=1.1 cm with �=3.5, n=5.6�106 m−3, Te=1.12�105 K,
Tp=2.7�105 K, and V=800 km s−1.
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FIG. 3. Noise power spectrum in V2 Hz−1 normalized to Te�K�1/2 calculated
with a kappa electron distribution ��=3.5� and a wire dipole antenna for
different values of the normalized antenna length L /LD.
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neric behavior of QTN spectra: a plateau below fp, a cutoff at
fp with a peak, which is sharper for longer antennas, and a
high-frequency spectrum proportional to f−3. The spectrum is
nearly flat for short antennas. For longer antennas, the peak
is sharp and occurs at fp, which allows a very precise
measurement of ne since the electron density is proportional
to fp

2.
Figure 4 shows the effect of changing the parameter �

for a wire dipole antenna with two different values of the
antenna length, 4 and 64 m corresponding to, respectively,
0.5 and 8 times the Debye length for �=3.5, n=5.6
�106 m−3, and Te=1.12�105 K. Thus, the spectrum with
u=0.5 and u=8 is equivalent in Figs. 3 and 4. The low-
frequency level does not depend very much on � for ��1,
especially for shorter antennas. This is because it depends
mainly on the bulk of the velocity distribution.9,10 The effect
of varying � is stronger close to the plasma frequency. We
also see that for a long wire antenna the high-frequency level
depends not on �, but only on n and Te. At frequency close to
the plasma frequency, the phase velocity of Langmuir waves
becomes very large, since the wave number is zero at fp.
Consequently, the fastest particles will resonate with these
waves, producing the noise peak at f � fp. Since the � index
is related to the proportion of suprathermal electrons, its high
influence on the QTN spectrum at the plasma frequency is
easily explained.

V. CONCLUSIONS

We developed the numerical solution for the determina-
tion of the longitudinal dielectric permittivity in the case of a
kappa distribution function for all values of � and applied it
to the QTN spectroscopy. We derived the following proper-
ties of the electron QTN in this case. The � parameter’s main
influence takes place close to the plasma frequency and
above. The high-frequency �f � fp� noise level on a wire an-
tenna of length L�LD only depends on the electron density
�n� and temperature �Te�, and the analytic expression

V2�V2 Hz−1� � 4 � 10−11Te�K�n�m−3�/f3�Hz�L�m�

given by Chateau and Meyer-Vernet7 can be used to obtain
an approximation of the noise level. Therefore the measure-
ment of this level gives a direct determination of the pressure
for any stable distribution function.

Figure 5 summarizes the parameters one could expect to
determine with the QTN spectroscopy in a drifting and col-
lisionless plasma, like the solar wind. In a more practical
view, the calculation of the QTN with any value of the pa-
rameter � allows us to analyze the data provided by space
missions in order to obtain precise measurements of the elec-
tron density, temperature, and nonthermal parameters in the
solar wind, which is essential to understand the energy trans-
port in collisionless plasma.
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